₹Math/ Science Center

Logarithm Basics:

For every logarithmic equation of the form $\,N=log_{b}(X)\,$ there is an exactly equivalent

exponential equation:
$$X=b^{\hbox{\scriptsize N}}$$

 $log_b(X)$ is "the logarithm to the base b of X" and is the number to which you raise b in order to get X

So we can think of logarithms as powers of the base, b.

"Taking the logarithm of" and "raising to a power" are inverse operations, i.e., each "undoes" the other:

$$\mathsf{N} = \log_b(b^N) \qquad \qquad \mathsf{and} \quad \mathsf{X} \; = \; b^{log}b^{(X)}$$

For every rule for exponents there is a corresponding rule for logarithms:

Exponents	Logarithms			
$b^0 = 1$	$\log_{\mathbf{b}}(1) = 0$			
$b^1 = b$	$\log_{\mathbf{b}}(\mathbf{b}) = 1$			
$b^{-1} = 1/b$	$\log_{\mathbf{b}}(1/\mathbf{b}) = -1$			
$b^{N} * b^{M} = b^{N+M}$	$\log_b(X * Y) = \log_b(X) + \log_b(Y)$			
$b^{N}/b^{M}=b^{N-M}$	$\log_b(X/Y) = \log_b(X) - \log_b(Y)$			
$(b^N)^M = b^{N*M}$	$\log_b(X^N) = N * \log_b(X)$			

By convention: $log(X) = log_{10}(X)$

Rule for changing base (e. g., to base 10):

$$ln(X) = log_e(X) \qquad log_b(X) = \frac{log(X)}{log(b)}$$

where $e \cong 2.718$

Logarithms of integers up to 10:

N	2	3	4	5	6	7	8	9
log(N)	0.30	0.48	0.60	0.70	0.78	0.85	0.90	0.95

Exercises:

For each of 1 – 8, match the expression or equation with an equivalent expression or equation in a) - h).

1.
$$\log_5 25$$
 2. $2^5 = X$ 3. $\log_5 5$ 4. $\log_2 1$

2.
$$2^5 = X$$

$$3. \log_5 5$$

5.
$$\log_5 5^X$$
 6. $\log_X 27 = 5$ 7. $8 = 2^X$ 8. $X^{-2} = 5$

7.
$$8 = 2^{X}$$

8.
$$X^{-2} = 5$$

c)
$$X^5 = 27$$

d)
$$\log_2 X = 5$$

e)
$$\log_2 8 = 3$$

a) 1 b) X c)
$$X^5 = 27$$
 d) $\log_2 X = 5$ e) $\log_2 8 = X$ f) $\log_X 5 = -2$

Simplify:

12.
$$\log_9 9^5$$

9.
$$\log_{10} 1000$$
 10. $\log_2 16$ 11. $\log_8 1$ 12. $\log_9 9^5$ 13. $\log_{10} 0.01$

16.
$$\log_4 \frac{1}{4}$$

14.
$$\log_2 8$$
 15. $\log_2 8$ 16. $\log_4 \frac{1}{4}$ 17. $\log_7 \frac{1}{49}$ 18. $\log_5 125$

24.
$$\log_{1/4} \frac{1}{64}$$

25.
$$\log_{81} 3 * \log_3 81$$

24.
$$\log_{1/4} \frac{1}{64}$$
 25. $\log_{81} 3 * \log_3 81$ 26. $\log_{10} (\log_4 (\log_3 81))$

Solve:

27.
$$|\log_3 X| = 2$$

28.
$$\log_4(3X - 2) = 2$$

27.
$$|\log_3 X| = 2$$
 28. $\log_4(3X - 2) = 2$ 29. $\log_8(2X + 1) = -1$

30.
$$\log_{10}(X^2 + 21X) = 2$$

Answers: 1.8 2.4 3.8 4.h 5.b 6.c 7.e 8.f 9.3 10.4
1
 1 1